
National Energy Research
Scientific Computing Center
(NERSC)

Observations on I/O Requirements for HPC
Applications: A User Perspective
John Shalf
NERSC Center Division, LBNL

DARPA Exascale Meeting
September 6, 2007

Motivation and Problem
Statement

•  Too much data.
•  Data Analysis “meat

grinders” not especially
responsive to needs of
scientific research
community.

•  What scientific users want:
–  Scientific Insight
–  Quantitative results
–  Feature detection, tracking,

characterization
–  (lots of bullets here omitted)

•  See:
http://vis.lbl.gov/Publications/2002/

VisGreenFindings-LBNL-51699.pdf
http://www-user.slac.stanford.edu/rmount/dm-

workshop-04/Final-report.pdf
Wes Bethel

Motivation and Problem
Statement

•  Too much data.
•  Analysis “meat grinders”

not especially responsive to
needs of scientific research
community.

•  What scientific users want:
–  Scientific Insight
–  Quantitative results
–  Feature detection, tracking,

characterization
–  (lots of bullets here omitted)

•  See:
http://vis.lbl.gov/Publications/2002/

VisGreenFindings-LBNL-51699.pdf
http://www-user.slac.stanford.edu/rmount/dm-

workshop-04/Final-report.pdf

Wes Bethel

Parallel I/O:
A User Perspective

•  Requirements (desires)
–  Write data from multiple processors into a single file
–  Undo the “domain decomposition” required to implement parallelism
–  File can be read in the same manner regardless of the number of CPUs that read

from or write to the file. (eg. we want to see the logical data layout… not the physical
layout)

–  Do so with the same performance as writing one-file-per-processor (only writing one-
file-per-processor because of performance problems)

seems simple: but scientists are tough customers
•  Scientists and Application Developers

–  Cannot agree on anything (Always roll their own implementation)
–  Only care about their OWN data model and requirements
–  Cannot tell the difference between a file format and a data schema (so they

end up being one-in-the-same)
–  Are forced to specify physical layout on disk by existing APIs

•  Always make the wrong choices when forced to do so!
•  Always blame the filesystem or hardware when the performance is terrible

Parallel I/O:
A User Perspective

•  Requirements (desires)
–  Write data from multiple processors into a single file
–  Undo the “domain decomposition” required to implement parallelism
–  File can be read in the same manner regardless of the number of CPUs that read

from or write to the file. (eg. we want to see the logical data layout… not the physical
layout)

–  Do so with the same performance as writing one-file-per-processor (only writing one-
file-per-processor because of performance problems)

seems simple: but scientists are tough customers
•  Scientists and Application Developers

–  Cannot agree on anything (Always roll their own implementation)
–  Only care about their OWN data model and requirements (forget IGUDM)
–  Cannot tell the difference between a file format and a data schema (so they

end up being one-in-the-same)
–  Are forced to specify physical layout on disk by existing APIs

•  Always make the wrong choices when forced to do so!
•  Always blame the filesystem or hardware when the performance is terrible

–  I have spent most of my career as one of those people!

Usage Model
•  Checkpoint/Restart

–  Typically not functional until ~1 month before the system is retired
–  Length of time between system introduction and functional CPR growing
–  Most users don’t do hero applications: tolerate failure by submitting more jobs (and

that includes apps that are targetting hero-scale applications)
–  Most people doing “hero applications” have written their own restart systems and

file formats
–  Typically close to memory footprint of code per dump

•  Must dump memory image ASAP!
•  Not as much need to remove the domain decomposition (recombiners for MxN problem)
•  not very sophisticated about recalculating derived quantities (stores all large arrays)
•  Might go back more than one checkpoint, but only need 1-2 of them online (staging)
•  Typically throw the data away if CPR not required

•  Data Analysis Dumps
–  Time-series data most demanding

•  Typically run with coarse-grained time dumps
•  If something interesting happens, resubmit job with higher output rate (and take a huge

penalty for I/O rates)
•  FLASH code: select output rate to do < 10% of exec time… full dump costs 30% or more

(up to 60% of exec time) (info from Katie Antypas)
•  Async I/O would make 50% I/O load go away, but nobody uses it! (rarely works)

–  Optimization or boundary-value problems typically have flexible output
requirements (typically diagnostic)

Finding Data

•  Use clever file names to indicate data contents
•  Use extensions to indicate format

–  However, subtle changes in file format can render file
unreadable

–  Mad search to find sub-revision of “reader” to read an older
version of a file

–  Consequence of confusing file format with data model
(common in this community)

•  Tend to get larger files when hierarchical self-
describing formats are used
–  Filesystem metadata (clever file names) replaced by file

metadata
–  File as “object database container”

•  Indexing
–  Metadata indices (SRMs, Metadata Catalogs)
–  Searching individual items within a dataset (FastBit)

Common Storage Formats

•  ASCII: (pitiful… this is still common… even for 3D I/O… and you want an exaflop??)
–  Slow
–  Takes more space!
–  Inaccurate

•  Binary
–  Nonportable (eg. byte ordering and types sizes)
–  Not future proof
–  Parallel I/O using MPI-IO

•  Self-Describing formats
–  NetCDF/HDF4, HDF5, Silo
–  Example in HDF5: API implements Object DB model in portable file
–  Parallel I/O using: pHDF5/pNetCDF (hides MPI-IO)

•  Community File Formats
–  FITS, HDF-EOS, SAF, PDB, Plot3D
–  Modern Implementations built on top of HDF, NetCDF, or other self-

describing object-model API

Common Data Models/Schemas
•  Structured Grids:

–  1D-6D domain decomposed mesh data
–  Reversing Domain Decomposition results in strided disk access pattern
–  Multiblock grids often stored in chunked fashion

•  Particle Data
–  1D lists of particle data (x,y,z location + physical properties of each particle)
–  Often non-uniform number of particles per processor
–  PIC often requires storage of Structured Grid together with cells

•  Unstructured Cell Data
–  1D array of cell types
–  1D array of vertices (x,y,z locations)
–  1D array of cell connectivity
–  Domain decomposition has similarity with particles, but must handle ghost cells

•  AMR Data (not too common yet)
–  Chombo: Each 3D AMR grid occupies distinct section of 1D array on disk (one array per

AMR level).
–  Enzo (Mike Norman, UCSD): One file per processor (each file contains multiple grids)
–  BoxLib: One file per grid (each grid in the AMR hierarchy is stored in a separate,cleverly

named, file)
•  Increased need for processing data from terrestrial sensors (read-oriented)

–  NERSC is now a net importer of data

Confusion about Data Models

•  Scientist/App Developers generally confused about
difference between Data Model and File Format
–  Should use modern hierarchical storage APIs such as HDF5 or

NetCDF
–  Performance deficiencies in HDF5 and pNetCDF generally traced

back to performance of Underlying MPI-IO layer
•  Point to deficiency of forcing specification of physical layout

•  More Complex Data Models
–  NetCDF is probably too weak of a data model
–  HDF5 is essentially an object database with portable self-describing

file format
–  Fiber bundles is probably going TOO FAR

Common Physical Layouts

•  One File Per Process
–  Terrible for HPSS!
–  Difficult to manage

•  Parallel I/O into a single file
–  Raw MPI-IO
–  pHDF5 pNetCDF

•  Chunking into a single file
–  Saves cost of reorganizing data
–  Depend on API to hide physical layout
–  (eg. expose user to logically contiguous array even though it

is stored physically as domain-decomposed chunks)

Common Themes for
Storage Patterns

•  Three patterns for parallel I/O into single file
–  >1D I/O: Each processor writes in a strided access

pattern simultaneously to disk (can be better organized…
eg. PANDA)

–  1D I/O: Each processor writes to distinct
subsections of 1D array (or more than one array)

–  1D Irregular I/O: Each processor writes to distinct, but non-
uniform subsections of 1D array (AMR, Unstructure Mesh
Lists, PIC data)

•  Three Storage Strategies
–  One file per processor (terrible for HPSS!!!)
–  One file per program: reverse domain decomp
–  One file per program: chunked output

3D (reversing the domain decomp)

3D (reversing the decomp)

Logical

Physical

3D (block alignment issues)

720 bytes
 720 bytes

Logical

Physical

8192 bytes

• Block updates require mutual exclusion

• Block thrashing on distributed FS

• I/O efficiency for sparse updates! (8k block required for 720 byte I/O operation

• Unaligned block accesses can kill performance! (but are necessary in practical I/O
solutions)

Writes not aligned

to block boundaries

Common Physical Layouts

•  One File Per Process
–  Terrible for HPSS!
–  Difficult to manage

•  Parallel I/O into a single file
–  Raw MPI-IO
–  pHDF5 pNetCDF

•  Chunking into a single file
–  Saves cost of reorganizing data
–  Depend on API to hide physical layout
–  (eg. expose user to logically contiguous array even though it

is stored physically as domain-decomposed chunks)

Performance Experiences

Platforms

Machine
Name

Parallel
File

System

Proc
Arch

Inter-
connect

Peak IO
BW

Max
Node BW

to IO
Jaguar Lustre Opteron SeaStar 18*2.3GB/s

= 42GB
3.2GB/s

(1.2GB/s)

Bassi GPFS Power5 Federation 6*1GB/s =
~6.0GB/s

4.0GB/s
(1.6GB/s)

•  18 DDN 9550 couplets on Jaguar, each
couplet delivers 2.3 - 3 GB/s

•  Bassi has 6 VSDs with 8 non-redundant
FC2 channels per VSD to achieve ~1GB/
s per VSD. (2x redundancy of FC)

Effective
unidirectional
bandwidth in
parenthesis

Caching Effects

Machine
Name

Mem Per
Node

Node
Size

Mem/
Proc

Jaguar 8GB 2 4GB

Bassi 32GB 8 4GB

File Size Effect on Jaguar

0

50

100

150

200

250

300

350

400

450

500

1
6
M
B

3
2
M
B

6
4
M
B

1
2
8
M
B

2
5
6
M
B

5
1
2
M
B

1
G
B

2
G
B

4
G
B

8
G
B

File Size / Processor

M
B

/
s

Write

Read

File Size Effect on Bassi

100

1000

10000

100000

1
6
M
B

3
2
M
B

6
4
M
B

1
2
8
M
B

2
5
6
M
B

5
1
2
M
B

1
G
B

2
G
B

4
G
B

8
G
B

File Size / Processor

M
B

/
s

Write

Read

Caching
Effect

•  On Bassi, file Size should
be at least 256MB/ proc to
avoid caching effect

•  On Jaguar, we have not
observed caching effect,
2GB/s for stable output

Transfer Size (P = 8)

•  Large transfer size is critical to achieve
performance (common cause for weak perf.)

•  Amdahl’s law commonly kills I/O performance
for small ops (eg. writing out record headers)

0

500

1000

1500

2000

2500

3000

3500

4000

1 10 100 1000 10000 100000 1000000

TransferSize (KB)

M
B

/
s

Bassi, Write

Jaguar , Write

Bassi, Read

Jaguar, Read

DSL Speed

HPC Speed

GPFS (unaligned accesses)

Effect of Block Alignment on GPFS Performance (each blocksize)

0

20

40

60

80

100

120

140

160

180

200

128 256 512 1024 2048 4096 8192 16384 32768

Block Size (bytes)

B
W

 M
b

yt
e
s/

se
c

maxbw
minbw
aligned bw

Unaligned access sucks!

Minbw is really

Unaligned bandwidth

GPFS: Unaligned accesses

GPFS Performance as a function of Block Alignment (1024 byte
blocksize)

0

5

10

15

20

25

30

35

40

0 31 62 93 12
4

15
5

18
6

21
7

24
8

27
9

31
0

34
1

37
2

40
3

43
4

46
5

49
6

52
7

55
8

58
9

62
0

65
1

68
2

71
3

74
4

77
5

80
6

83
7

86
8

89
9

93
0

96
1

99
2

10
23

Block Alignment

M
B

/
s

MB/sec

GPFS: (what alignment is best?)

Worst and best alignments for GPFS at different blocksizes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

128 256 512 1024 2048 4096 8192 16384 32768

Blocksize

N
o

rm
a
li

ze
d

 a
li

g
n

m
e
n

t
w

it
h

in
 b

lo
ck

worstalign
bestalign

No consistently “best” alignment except for perfect block alignment!

That means 256k block boundaries for GPFS!

Scaling (No. of Processors)

•  The I/O performance peaks at:
–  P = 256 on Jaguar (lstripe=144),
–  Close to peaks at P = 64 on Bassi

•  The peak of I/O performance can often be
achieved at relatively low concurrency

I/O Scaling on Bassi

0

1000

2000

3000

4000

5000

6000

7000

8 32 64 128 256

No. of Processors

M
B

/
s

Write

Read

Peak

I/O Scaling on Jaguar

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

8 32 64 128 256 1024

No. of Processors

M
B

/
s

Write

Read

Peak

Shared vs. One file Per Proc

•  The performance of using a shared file is very
close to using one file per processor

•  Using a shared file performs even better on
Jaguar due to less metadata overhead

Bassi

0

1000

2000

3000

4000

5000

6000

7000

8 32 64 128 256

No. of Processors

M
B

/
s

Individual, Write

Shared, Write

Individual, Read

Shared, Read

Jaguar

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

8 32 64 128 256 1024

No. of Processors

M
B

/
s

Individual, Write

Shared, Write

Individual, Read

Shared, Read

Programming Interface

•  MPI-IO is close to POSIX performance
•  Concurrent POSIX access to single-file works correctly

–  MPI-IO used to be required for correctness, but no longer
•  HDF5 (v1.6.5) falls a little behind, but tracks MPI-IO performance
•  parallelNETCDF (v1.0.2pre) performs worst, and still has 4GB dataset size limitation

(due to limits on per-dimension sizes on latest version)

Bassi

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

No. of Processors

M
B

/
s

Posix

MPI-IO

HDF5

NETCDF

Programming Interface

•  POSIX, MPI-IO, HDF5 (v1.6.5) offer very similar
scalable performance

•  parallelNetCDF (v1.0.2.pre): flat performance

Jaguar

0

5000

10000

15000

20000

25000

30000

8 32 64 128 256 1024

No. of Processors

M
B

/
s

Posix

MPI-IO

HDF5

NETCDF

Comments for DARPA

•  If you are looking at low-level disk access
patterns, you are probably looking at the wrong
thing
–  Reflection of imperative programming interface that forces

user to specify physical layout on disk
–  Users always make poor choices for physical layout
–  You will end up designing I/O for bad use case

•  Conclusion: Application developers forced to
make bad choices by imperative APIs
–  MPI-IO is a pretty good API for an imperative approach to

describing mapping from memory to disk file layout
–  The imperative programming interface embodied by MPI-IO

was the wrong choice! (we screwed up years ago and are
paying the price now for our mistake!)

–  Lets not set new I/O system requirements based on existing
physical disk access patterns -- consider logical data
schema of the applications (more freedom for optimization)

Data Layout:
Imperative vs. Declarative

•  Physical vs. Logical
–  Physical Layout In Memory
–  Physical Layout on Disk
–  Logical Layout (data model): intent of application developer

•  Imperative Model
–  Define physical layout in memory
–  Define physical intended physical layout on disk
–  Commit operation (read or write)
–  Performance

•  Limited by strict POSIX semantics (looking for “relaxed POSIX”)
•  Compromised by Naïve users making wrong choices for phys layout
•  Limited freedom to optimize performance (data-shipping)

–  APIs: MPI-IO, POSIX
•  Declarative Model

–  Define physical layout in memory
–  Define logical layout for “global view” of the data
–  Performance

•  Lower layers of the software get to make decisions about optimizing physical layout
and annotate the file to record the choices that it made

•  User needn’t be exposed to details of disk or “relaxed POSIX” semantics
–  API/Examples: PANDA. HDF5 has some elements, but limited by MPI-IO

Declarative vs. Imperative

•  Application developers really don’t care (or
shouldn’t care) about physical layout
–  Know physical layout in memory
–  Know desired “logical layout” for the global view of their

“data”
–  Currently FORCED to define physical layout because the $

%^&* API requires it!
–  When forced to define the physical (in memory) to physical

(on disk) mapping, application developers always make the
wrong choices!

–  Declarative model to specify desired logical layout would be
better, and provide filesystems or APIs more freedom to
optimize performance (e.g. Server Directed I/O)

•  DB Pioneers learned these lessons 50 years ago
–  Our community is either stupid or arrogant for failing to heed

these lessons (probably just arrogant)

Say something nice about
server directed I/O

•  Describe data layout in memory
–  Typically only have to do once after code

startup
–  exception for adaptive codes, but there are not

too many of them
•  Describe desired layout on disk *or*

desired logical layout
•  Say “commit” when you want to write it

out
•  I/O subsystem requests data from

compute nodes in optimal order for
storage subsystem

FSP Storage Recommendations

•  Need Common Structures for Data Exchange

–  Must be able to compare data between simulation and experiment

–  Must be able to compare data between different simulations

–  Must be able to use output from one set of codes as boundary

conditions for a different set of codes

–  Must be able to share visualization and analysis tools & software

infrastructure

•  Implementation (CS issues)

–  separate data model from file format

–  Develop veneer interfaces (APIs) to simplify data access for physics

codes

–  utilize modern database-like file storage approaches (hierarchical,

self-describing file formats)

•  Approach (management & funding)

–  must be developed through agreements/compromises within
community (not imposed by CS on the physics community)

–  not one format (many depending on area of data sharing)

–  requires some level of sustained funding to maintain and document

the data models & associated software infrastructure (data storage
always evolves, just as the physics models and ITER engineering
design evolves)

Comments about Performance for Multicore

The Future of
HPC System Concurrency

Total # of Processors in Top15

0

50000

100000

150000

200000

250000

300000

350000

Ju
n
-9
3

D
e
c
-9
3

Ju
n
-9
4

D
e
c
-9
4

Ju
n
-9
5

D
e
c
-9
5

Ju
n
-9
6

D
e
c
-9
6

Ju
n
-9
7

D
e
c
-9
7

Ju
n
-9
8

D
e
c
-9
8

Ju
n
-9
9

D
e
c
-9
9

Ju
n
-0
0

D
e
c
-0
0

Ju
n
-0
1

D
e
c
-0
1

Ju
n
-0
2

D
e
c
-0
2

Ju
n
-0
3

D
e
c
-0
3

Ju
n
-0
4

D
e
c
-0
4

Ju
n
-0
5

D
e
c
-0
5

Ju
n
-0
6

List

P
ro

ce
ss

o
rs

Must ride exponential wave of increasing concurrency for forseeable future!

You will hit 1M cores sooner than you think!

Scalable I/O Issues For High
On-Chip Concurrency

•  Scalable I/O for massively concurrent systems!
–  Many issues with coordinating access to disk within node (on chip

or CMP)
–  OS will need to devote more attention to QoS for cores competing

for finite resource (mutex locks and greedy resource allocation
policies will not do!) (it is rugby where device == the ball)

nTasks I/O Rate
16 Tasks/node

I/O Rate
8 tasks per node

8 - 131 Mbytes/sec
16 7 Mbytes/sec 139 Mbytes/sec
32 11 Mbytes/sec 217 Mbytes/sec
64 11 Mbytes/sec 318 Mbytes/sec
128 25 Mbytes/sec 471 Mbytes/sec

Old OS Assumptions are
Bogus on Hundreds of Cores

•  Assumes limited number of CPUs that must be shared
–  Old OS: time-multiplexing (context switching and cache pollution!)
–  New OS: spatial partitioning

•  Greedy allocation of finite I/O device interfaces (eg. 100 cores go after the
network interface simultaneously)

–  Old OS: First process to acquire lock gets device (resource/lock contention! Nondet delay!)
–  New OS: QoS management for symmetric device access

•  Background task handling via threads and signals
–  Old OS: Interrupts and threads (time-multiplexing) (inefficient!)
–  New OS: side-cores dedicated to DMA and async I/O

•  Fault Isolation
–  Old OS: CPU failure --> Kernel Panic (will happen with increasing frequency in future silicon!)
–  New OS: CPU failure --> Partition Restart (partitioned device drivers)

•  Old OS invoked any interprocessor communication or scheduling vs. direct HW
access

•  New OS/CMP contract
–  No Time Multiplexing: Spatial partitioning
–  No interrupts: use side-cores
–  Resource Management: Need QoS policy enforcement at deepest level of chip and OS

Comments about Interconnect Performance

Interconnect Design Considerations
for Massive Concurrency

•  Application studies provide insight to
requirements for Interconnects (both on-
chip and off-chip)

–  On-chip interconnect is 2D planar
(crossbar won’t scale!)

–  Sparse connectivity for dwarfs; crossbar is
overkill

–  No single best topology
•  A Bandwidth-oriented network for data

–  Most point-to-point message exhibit
sparse topology & bandwidth bound

•  Separate Latency-oriented network for
collectives

–  E.g., Thinking Machines CM-5, Cray T3D,
IBM BlueGene/L&P

•  Ultimately, need to be aware of the on-chip
interconnect topology in addition to the off-
chip topology

–  Adaptive topology interconnects (HFAST)
–  Intelligent task migration?

Interconnects
Need For High Bisection Bandwidth

•  3D FFT easy-to-identify
as needing high bisection
–  Each processor must send

messages to all PE’s! (all-to-all)
for 1D decomposition

–  However, most implementations
are currently limited by overhead
of sending small messages!

–  2D domain decomposition
(required for high concurrency)
actually requires sqrt(N)
communicating partners! (some-
to-some)

•  Same Deal for AMR
–  AMR communication is sparse,

but by no means is it bisection
bandwidth limited

Accelerator Modeling Data

•  Point data
–  Electrons or protons
–  Millions or billions in a simulation
–  Distribution is non-uniform

•  Fixed distribution at start of simulation
•  Change distribution (load balancing) each iteration

•  Attributes of a point
–  Location: (double) x,y,z
–  Phase: (double) mx,my,mz
–  ID: (int64) id
–  Other attributes

Accelerator Modeling Data

Storage Format

. . .
X

Y

Z

…

Laid out sequentially on disk

Some formats are interleaved,

but causes problems for data analysis

Easier to reorganize in memory than on disk!

X1
X2
X3
X4
X5
X6
X7
 Xn

0
 NX-1

NX
 NX + NY-1

NX + NY

Y1
Y2
 Yn

Accelerator Modeling Data

Storage Format

X

Y

Z

…

P1
 P2

2k particles
 380 p

P3

1k particles

. . .
X1
X2
X3
X4
X5
X6
 ..
 Xn

Y1
Y2
 Yn

Accelerator Modeling Data

Calculate Offsets using Collective (AllGather)

X

Y

Z

…

P1
 P2

2k particles
 380 p

P3

1k particles

2k elements
 380 elem
 1k elements

Then write to mutually exclusive sections of array

Still suffers from alignment issues…

One array at a time

Accelerator Modeling Benchmark

One file per
processor
Raw binary

1288 MB/s 20 MB/s

Parallel I/O (1-file)
Raw binary MPI-IO

241 MB/s 3 MB/s

Parallel I/O (1-file)
pHDF5 -- H5Part

773 MB/s 12 MB/s

Seaborg:
64nodes,

1024 processors,

780 Gbytes of data total

Physical Layout Tends to Result in
Handful of I/O Patterns

•  2D-3D I/O patterns (striding)
–  1 file per processor (Raw Binary and HDF5)

•  Raw binary assesses peak performance
•  HDF5 determines overhead of metadata, data encoding, and small

accesses associated with storage of indices and metadata
–  1-file reverse domain decomp (Raw MPI-IO and pHDF5)

•  MPI-IO is baseline (peak performance)
•  Assess pHDF5 or pNetCDF implementation overhead

–  1-file chunked (Raw MPI-IO and pHDF5)
•  1D I/O patterns (writing to distinct 1D offsets)

–  Same as above, but for 1D data layouts
–  1-file per processor is same in both cases

•  MadBench?
–  Out-of-Core performance (emphasizes local filesystem?)

GPFS MPI-I/O Experiences

nTasks I/O Rate
16 Tasks/node

I/O Rate
8 tasks per node

8 - 131 Mbytes/sec
16 7 Mbytes/sec 139 Mbytes/sec
32 11 Mbytes/sec 217 Mbytes/sec
64 11 Mbytes/sec 318 Mbytes/sec
128 25 Mbytes/sec 471 Mbytes/sec

• Block domain decomp of 512^3 3D 8-byte/element array in memory

written to disk as single undecomposed 512^3 logical array.

• Average throughput for 5 minutes of writes x 3 trials

• Issue is related to LAPI lock contention…

GPFS: BW as function of write length

Block Aligned on disk!

Page Aligned in memory!

Amdahl’s law effects for

Metadata storage…

Serial Performance as a function of Blocksize

0

50

100

150

200

250

300

4 8 16 32 64 12
8

25
6

51
2
10
24

20
48

40
96

81
92

16
38
4

32
76
8

65
53
6

13
10
72

26
21
44

52
42
88

1E
+0
6

Block Size

M
e
g

a
b

yt
e
s/

se
c

XFS
GPFS

GPFS (unaligned accesses)

Effect of Block Alignment on GPFS Performance (each blocksize)

0

20

40

60

80

100

120

140

160

180

200

128 256 512 1024 2048 4096 8192 16384 32768

Block Size (bytes)

B
W

 M
b

yt
e
s/

se
c

maxbw
minbw
aligned bw

Unaligned access sucks!

Minbw is really

Unaligned bandwidth

GPFS: Unaligned accesses

GPFS Performance as a function of Block Alignment (1024 byte
blocksize)

0

5

10

15

20

25

30

35

40

0 31 62 93 12
4

15
5

18
6

21
7

24
8

27
9

31
0

34
1

37
2

40
3

43
4

46
5

49
6

52
7

55
8

58
9

62
0

65
1

68
2

71
3

74
4

77
5

80
6

83
7

86
8

89
9

93
0

96
1

99
2

10
23

Block Alignment

M
B

/
s

MB/sec

GPFS: (what alignment is best?)

Worst and best alignments for GPFS at different blocksizes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

128 256 512 1024 2048 4096 8192 16384 32768

Blocksize

N
o

rm
a
li

ze
d

 a
li

g
n

m
e
n

t
w

it
h

in
 b

lo
ck

worstalign
bestalign

No consistently “best” alignment except for perfect block alignment!

That means 256k block boundaries for GPFS!

Higher-Level Storage Organization

HDF4/NetCDF Data Model

•  Datasets
–  Name
–  Datatype
–  Rank,Dims

SDS 0: name= density

Type=Float64

Rank=3 Dims=128,128,64

SDS 1: name= density

Type=Float64

Rank=3 Dims=128,128,64

SDS 2: name= pressure

Type=Float64

Rank=3 Dims=128,128,64

Datasets are inserted

sequentially to

the file

Can be randomly

accessed on read

HDF4/NetCDF Data Model

•  Datasets
–  Name
–  Datatype
–  Rank,Dims

•  Attributes
–  Key/value pair
–  DataType and length

SDS 0: name= density

Type=Float64

Rank=3 Dims=128,128,64

SDS 1: name= density

Type=Float64

Rank=3 Dims=128,128,64

SDS 2: name= pressure

Type=Float64

Rank=3 Dims=128,128,64

“time” = 0.5439

“origin”=0,0,0

“time” = 1.329

“origin”=0,0,0

“time” = 0.5439

“origin”=0,0,0

HDF4/NetCDF Data Model

•  Datasets
–  Name
–  Datatype
–  Rank,Dims

•  Attributes
–  Key/value pair
–  DataType and length

•  Annotations
–  Freeform text
–  String Termination

SDS 0: name= density

Type=Float64

Rank=3 Dims=128,128,64

SDS 1: name= density

Type=Float64

Rank=3 Dims=128,128,64

SDS 2: name= pressure

Type=Float64

Rank=3 Dims=128,128,64

“time” = 0.5439

“origin”=0,0,0

“time” = 1.329

“origin”=0,0,0

“time” = 0.5439

“origin”=0,0,0

Author comment: Something interesting!

HDF4/NetCDF Data Model

•  Datasets
–  Name
–  Datatype
–  Rank,Dims

•  Attributes
–  Key/value pair
–  DataType and length

•  Annotations
–  Freeform text
–  String Termination

•  Dimensions
–  Edge coordinates
–  Shared attribute

SDS 0: name= density

Type=Float64

Rank=3 Dims=128,128,64

SDS 1: name= density

Type=Float64

Rank=3 Dims=128,128,64

SDS 2: name= pressure

Type=Float64

Rank=3 Dims=128,128,64

“time” = 0.5439

“origin”=0,0,0

“time” = 1.329

“origin”=0,0,0

“time” = 0.5439

“origin”=0,0,0

“dims0”= < edge coords for X>

“dims1”= < edge coords for Y>

“dims2”= < edge coords for Z>

Author comment: Something interesting!

HDF5 Data Model

•  Groups
–  Arranged in directory

hierarchy
–  root group is always ‘/’

•  Datasets
–  Dataspace
–  Datatype

•  Attributes
–  Bind to Group & Dataset

•  References
–  Similar to softlinks
–  Can also be subsets of

data

“/”

(root)

“Dataset0”

type,space

“Dataset1”

type, space

“subgrp”

“time”=0.2345

“validity”=None

“author”=JoeBlow

“Dataset0.1”

type,space

“Dataset0.2”

type,space

HDF5 Data Model (funky
stuff)

•  Complex Type Definitions
–  Not commonly used feature

of the data model.
–  Potential pitfall if you

commit complex datatypes
to your file

•  Comments
–  Yes, annotations actually do

live on.

“/”

(root)

“Dataset0”

type,space

“Dataset1”

type, space

“subgrp”

“time”=0.2345

“validity”=None

“author”=JoeBlow

“Dataset0.1”

type,space

“Dataset0.2”

type,space

typedef

HDF5 Data Model (caveats)

•  Flexible/Simple Data Model
–  You can do anything you want

with it!
–  You typically define a higher

level data model on top of
HDF5 to describe domain-
specific data relationships

–  Trivial to represent as XML!
•  The perils of flexibility!

–  Must develop community
agreement on these data
models to share data
effectively

–  Multi-Community-standard
data models required across
for reusable visualization tools

–  Preliminary work on Images
and tables

“/”

(root)

“Dataset0”

type,space

“Dataset1”

type, space

“subgrp”

“time”=0.2345

“validity”=None

“author”=JoeBlow

“Dataset0.1”

type,space

“Dataset0.2”

type,space

Data Storage Layout / Selections

•  Elastic Arrays
•  Hyperslabs

–  Logically contiguous chunks of data
–  Multidimensional Subvolumes
–  Subsampling (striding, blocking)

•  Union of Hyperslabs
–  Reading a non-rectangular sections

•  Gather/Scatter
•  Chunking

–  Usually for efficient Parallel I/O

Dataspace Selections (H5S)

Transfer a subset of data from disk to fill a memory buffer

Memory Dataspace

mem_space = H5S_ALL

Or

mem_space =H5Dcreate(rank=2,dims[2]={4,6});

Transfer/Read operation

 H5Dread(dataset,mem_datatype, mem_space, disk_space,

H5P_DEFAULT, mem_buffer);

Disk Dataspace

H5Sselect_hyperslab(disk_space, H5S_SELECT_SET,

offset[3]={1,2},NULL,count[2]={4,6},NULL)

2

1

4

6

Dataspace Selections (H5S)

Transfer a subset of data from disk to subset in memory

Memory Dataspace

mem_space =H5Dcreate_simple(rank=2,dims[2]={12,14});

H5Sselect_hyperslab(mem_space, H5S_SELECT_SET,

offset[3]={0,0},NULL,count[2]={4,6},NULL)

Transfer/Read operation

 H5Dread(dataset,mem_datatype, mem_space, disk_space,

H5P_DEFAULT, mem_buffer);

Disk Dataspace

H5Sselect_hyperslab(disk_space, H5S_SELECT_SET,

offset[3]={1,2},NULL,count[2]={4,6},NULL)

2

1

4

6

12

14

pHDF5 (example 1)

P0
 P1
 P2
 P3

Dataset

Name=“dat”

Dims={64,64}

• File open requires explicit selection of Parallel I/O layer.
• All PE’s collectively open file and declare the overall size of the
dataset.

All MPI Procs!

props = H5Pcreate(H5P_FILE_ACCESS);

/* Create file property list and set for Parallel I/O */

H5Pset_fapl_mpio(prop, MPI_COMM_WORLD,

MPI_INFO_NULL);

file=H5Fcreate(filename,H5F_ACC_TRUNC,

H5P_DEFAULT,props); /* create file */

H5Pclose(props); /* release the file properties list */

filespace = H5Screate_simple(rank=2,dims[2]={64,64},

NULL)

dataset = H5Dcreate(file,”dat”,H5T_NATIVE_INT,

space,H5P_DEFAULT); /* declare dataset */

pHDF5 (example 1 cont…)

P1
 P2
 P3

• Each proc selects a hyperslab of the dataset that represents
its portion of the domain-decomposed dataset and read/write
collectively or independently.

All MPI Procs!

/* select portion of file to write to */

H5Sselect_hyperslab(filespace, H5S_SELECT_SET,

start= P0{0,0}:P1{0,32}:P2{32,32}:P3{32,0},

stride= {32,1},count={32,32},NULL);

/* each proc independently creates its memspace */

memspace = H5Screate_simple(rank=2,dims={32,32},

NULL);

/* setup collective I/O prop list */

xfer_plist = H5Pcreate (H5P_DATASET_XFER);

H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);

H5Dwrite(dataset,H5T_NATIVE_INT, memspace, filespace,

xfer_plist, local_data); /* write collectively */

Select

{32,32}

@{0,0}

Select

{32,32}

@{0,32}

Select

{32,32}

@{32,32}

Select

{32,32}

@{32,0}

P0

Serial I/O Benchmarks

System HDF4.1r5
(netCDF)

HDF5
v1.4.4

FlexIO
(Custom)

F77
Unf

SGI Origin 3400
(escher.nersc.gov)

111M/s 189M/s 180M/s 140M/s

IBM SP2
(seaborg.nersc.gov)

65M/s 127M/s 110M/s 110M/s

Linux IA32
(platinum.ncsa.uiuc.edu)

34M/s 40M/s 62M/s 47M/s

Linux IA64 Teragrid node
(titan.ncsa.uiuc.edu)

26M/s 83M/s 77M/s 112M/s

NEC/Cray SX-6
(rime.cray.com)

• Write 5-40 datasets of 128^3 DP float data

• Single CPU (multiple CPU’s can improve perf. until interface saturates)

• Average of 5 trials

GPFS MPI-I/O Experiences

nTasks I/O Rate
16 Tasks/node

I/O Rate
8 tasks per node

8 - 131 Mbytes/sec
16 7 Mbytes/sec 139 Mbytes/sec
32 11 Mbytes/sec 217 Mbytes/sec
64 11 Mbytes/sec 318 Mbytes/sec
128 25 Mbytes/sec 471 Mbytes/sec

• Block domain decomp of 512^3 3D 8-byte/element array in memory

written to disk as single un-decomposed 512^3 logical array.

• Average throughput for 5 minutes of writes x 3 trials

